login
A124199
Primes of the form k(k+1)/2-2 (i.e., two less than triangular numbers).
6
13, 19, 43, 53, 89, 103, 151, 229, 251, 349, 433, 463, 593, 701, 739, 859, 1033, 1223, 1429, 1483, 1709, 1889, 1951, 2143, 2699, 3001, 3079, 3319, 3739, 4003, 4093, 4463, 4751, 5563, 5669, 6553, 7019, 7873, 8513, 9043, 10009, 10151, 10729, 11173, 11779
OFFSET
1,1
COMMENTS
Equal to primes of the form (k^2-17)/8. Also equal to primes p such that 8*p+17 is a square. - Chai Wah Wu, Jul 14 2014
LINKS
EXAMPLE
The (first five triangular numbers)-2 are: -1,1,4,8,13. So a(1)=13 is the first prime of this form.
MATHEMATICA
Pick[ #1, PrimeQ[ #1]]&[((1/2)*#1*(#1 + 1) - 2 & ) /@ Range[180]]
Select[Accumulate[Range[250]]-2, PrimeQ] (* Harvey P. Dale, Jun 07 2020 *)
PROG
(Python)
import sympy
[n*(n+1)/2-2 for n in range(10**6) if isprime(n*(n+1)/2-2)] # Chai Wah Wu, Jul 14 2014
(PARI) isok(p) = isprime(p) && ispolygonal(p+2, 3); \\ Michel Marcus, Sep 19 2022
CROSSREFS
Cf. A055472.
Sequence in context: A252021 A216101 A096455 * A119869 A272200 A106904
KEYWORD
easy,nonn
AUTHOR
Peter Pein (petsie(AT)dordos.net), Dec 07 2006
STATUS
approved