OFFSET
1,1
COMMENTS
The other primes congruent to 1 modulo 3 are given in A272201.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives such primes corresponding to A(m+1) == 1 (mod 3). The ones corresponding to A(m+1) not == 1 (mod 3) (the complement) are given in A272201.
This bisection of the primes from A002476 is needed in the formula for the coefficients of the q-expansion (q = exp(2*Pi*i*z), Im(z) > 0) of the modular cusp form (eta(6*z))^4|_{z=z(q)} = Eta64(q) with Dedekind's eta function. See A000727 which gives the coefficients of the q-expansion of F(q) = Eta64(q^(1/6))/q^(1/6) = (Product_{m>=0} (1 - q^m))^4. The coefficients F(q) = Sum_{n>=0} f(6*n+1)*q^n are given in the Finch link on p. 5, using multiplicativity. For primes congruent to 1 modulo 6 the formula involves x_p and y_p which are the present A and B for prime p == 1 (mod 3).
See also the p-defects of the elliptic curve y^2 = x^3 + 1, related to (eta(6*z))^4, given in A272198 with another (equivalent) way to find the coefficients of the Eta64(q) expansion, hence those of F(q).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
FORMULA
MAPLE
filter:= proc(n) local S, x, y;
if not isprime(n) then return false fi;
S:= remove(hastype, [isolve(x^2+3*y^2=n)], negative);
subs(S[1], x) mod 3 = 1
end proc:
select(filter, [seq(i, i=7..1000, 6)]); # Robert Israel, Apr 29 2019
MATHEMATICA
filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] == 1];
Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Wolfdieter Lang, Apr 28 2016
STATUS
approved