OFFSET
1,2
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904 [Annotated scans of selected pages]
S. R. Finch, Powers of Euler's q-Series, (arXiv:math.NT/0701251).
B. van der Pol and P. Speziali, The primes in k(rho) (annotated and scanned copy)
MATHEMATICA
nmax = 56; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := x /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 0; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* Jean-François Alcover, Oct 19 2011 *)
PROG
(Haskell)
a001479 n = a000196 $ head $
filter ((== 1) . a010052) $ map (a007645 n -) $ tail a033428_list
-- Reinhard Zumkeller, Jul 11 2013
(PARI) do(lim)=my(v=List(), q=Qfb(1, 0, 3)); forprime(p=2, lim, if(p%3==2, next); listput(v, qfbsolve(q, p)[1])); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Definition revised by N. J. A. Sloane, Jan 29 2013
STATUS
approved