login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029136
Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
1
1, 0, 1, 1, 2, 1, 4, 2, 5, 4, 7, 5, 11, 7, 13, 11, 17, 13, 23, 17, 27, 23, 33, 27, 42, 33, 48, 42, 57, 48, 69, 57, 78, 69, 90, 78, 106, 90, 118, 106, 134, 118, 154, 134, 170, 154, 190, 170, 215, 190, 235, 215, 260, 235, 290, 260, 315, 290, 345, 315, 381, 345
OFFSET
0,5
COMMENTS
Number of nonisomorphic hollow hexagons with n hexagons for n >= 8 (a class of primitive coronoids).
Number of partitions of n into parts 2, 3, 4, and 6. - Joerg Arndt, Jul 09 2014
REFERENCES
B. N. Cyvin et al., Enumeration of conjugated hydrocarbons..., Structural Chem., 6 (1995), 85-88, equations (1)-(5) and (24).
LINKS
Tricia Muldoon Brown, Lattice path coronoids, Open J. Disc. Appl. Math. (2023) Vol. 6, No. 3, 1-21.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,0,-1,-1,0,-1,1,1,1,0,-1).
FORMULA
a(n) = floor((2*n^3 + 45*n^2 + (273 + 96*(floor(n/3) - floor((n-1)/3)))*n + 1284 + 3*(3*n^2 + 45*n + 148)*(-1)^n)/1728). - Tani Akinari, Jul 08 2014
a(i+15) - a(i+13) - a(i+12) - a(i+11) + a(i+10) + a(i+8) + a(i+7) + a(i+5) - a(i+4) - a(i+3) - a(i+2) + a(i) = 0. - Robert Israel, Jul 08 2014
MAPLE
M := Matrix(15, (i, j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 4, 11, 12, 13])) then 1 elif j=1 and member(i, [5, 7, 8, 10, 15]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..53); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
PROG
(PARI) a(n)=(2*n^3+45*n^2+(273+96*(n%3<1))*n+1284+3*(3*n^2+45*n+148)*(-1)^n)\1728 \\ Tani Akinari, Jul 08 2014
CROSSREFS
Sequence in context: A106044 A124896 A008742 * A001479 A128861 A161307
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, Jul 08 2014
STATUS
approved