OFFSET
0,5
COMMENTS
Number of nonisomorphic hollow hexagons with n hexagons for n >= 8 (a class of primitive coronoids).
Number of partitions of n into parts 2, 3, 4, and 6. - Joerg Arndt, Jul 09 2014
REFERENCES
B. N. Cyvin et al., Enumeration of conjugated hydrocarbons..., Structural Chem., 6 (1995), 85-88, equations (1)-(5) and (24).
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Tricia Muldoon Brown, Lattice path coronoids, Open J. Disc. Appl. Math. (2023) Vol. 6, No. 3, 1-21.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,0,-1,-1,0,-1,1,1,1,0,-1).
FORMULA
a(n) = floor((2*n^3 + 45*n^2 + (273 + 96*(floor(n/3) - floor((n-1)/3)))*n + 1284 + 3*(3*n^2 + 45*n + 148)*(-1)^n)/1728). - Tani Akinari, Jul 08 2014
a(i+15) - a(i+13) - a(i+12) - a(i+11) + a(i+10) + a(i+8) + a(i+7) + a(i+5) - a(i+4) - a(i+3) - a(i+2) + a(i) = 0. - Robert Israel, Jul 08 2014
MAPLE
M := Matrix(15, (i, j)-> if (i=j-1) or (j=1 and member(i, [2, 3, 4, 11, 12, 13])) then 1 elif j=1 and member(i, [5, 7, 8, 10, 15]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..53); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
PROG
(PARI) a(n)=(2*n^3+45*n^2+(273+96*(n%3<1))*n+1284+3*(3*n^2+45*n+148)*(-1)^n)\1728 \\ Tani Akinari, Jul 08 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Wesley Ivan Hurt, Jul 08 2014
STATUS
approved