login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029137
Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)).
0
1, 0, 1, 1, 2, 1, 3, 3, 4, 4, 6, 6, 8, 8, 11, 11, 14, 14, 18, 18, 22, 23, 27, 28, 33, 34, 39, 41, 47, 48, 55, 57, 64, 66, 74, 77, 85, 88, 97, 101, 110, 114, 125, 129, 140, 145, 157, 162, 175, 181, 194, 201, 215, 222, 237, 245, 261, 269, 286, 295, 313, 322
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 2, 3, 4, and 7. - Joerg Arndt, Jun 01 2014
FORMULA
G.f.: 1 / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jun 01 2014
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^7)), {x, 0, 60}], x] (* Harvey P. Dale, Aug 29 2011 *)
PROG
(PARI) a(n)=round((n+8)*(2*n^2+32*n+89+63*(-1)^n)/2016+(1-n%3)/9) \\ Tani Akinari, Jun 01 2014
(PARI) Vec(1/((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jun 01 2014
CROSSREFS
Sequence in context: A049786 A282611 A187498 * A323054 A339396 A027157
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Jun 01 2014
STATUS
approved