login
A029137
Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)).
0
1, 0, 1, 1, 2, 1, 3, 3, 4, 4, 6, 6, 8, 8, 11, 11, 14, 14, 18, 18, 22, 23, 27, 28, 33, 34, 39, 41, 47, 48, 55, 57, 64, 66, 74, 77, 85, 88, 97, 101, 110, 114, 125, 129, 140, 145, 157, 162, 175, 181, 194, 201, 215, 222, 237, 245, 261, 269, 286, 295, 313, 322
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 2, 3, 4, and 7. - Joerg Arndt, Jun 01 2014
FORMULA
G.f.: 1 / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jun 01 2014
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^7)), {x, 0, 60}], x] (* Harvey P. Dale, Aug 29 2011 *)
PROG
(PARI) a(n)=round((n+8)*(2*n^2+32*n+89+63*(-1)^n)/2016+(1-n%3)/9) \\ Tani Akinari, Jun 01 2014
(PARI) Vec(1/((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jun 01 2014
CROSSREFS
Sequence in context: A049786 A282611 A187498 * A323054 A339396 A027157
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Jun 01 2014
STATUS
approved