Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Jun 13 2015 00:49:10
%S 1,0,1,1,2,1,3,3,4,4,6,6,8,8,11,11,14,14,18,18,22,23,27,28,33,34,39,
%T 41,47,48,55,57,64,66,74,77,85,88,97,101,110,114,125,129,140,145,157,
%U 162,175,181,194,201,215,222,237,245,261,269,286,295,313,322
%N Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^7)).
%C Number of partitions of n into parts 2, 3, 4, and 7. - _Joerg Arndt_, Jun 01 2014
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,-1,-1,0,0,0,-1,-1,1,1,1,0,-1).
%F G.f.: 1 / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)). - _Colin Barker_, Jun 01 2014
%t CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^7)),{x,0,60}],x] (* _Harvey P. Dale_, Aug 29 2011 *)
%o (PARI) a(n)=round((n+8)*(2*n^2+32*n+89+63*(-1)^n)/2016+(1-n%3)/9) \\ _Tani Akinari_, Jun 01 2014
%o (PARI) Vec(1/((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Jun 01 2014
%K nonn,easy
%O 0,5
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Jun 01 2014