login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029139
Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^9)).
1
1, 0, 1, 1, 2, 1, 3, 2, 4, 4, 5, 5, 8, 7, 9, 10, 12, 12, 16, 15, 19, 20, 23, 23, 29, 28, 33, 35, 39, 40, 47, 47, 53, 56, 61, 63, 72, 72, 80, 84, 91, 93, 104, 105, 115, 120, 128, 132, 145, 147, 158, 165, 175, 180, 195, 198, 212, 220, 232, 238, 256, 260, 276, 286, 300, 308
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 2, 3, 4, and 9. - Joerg Arndt, Aug 14 2013
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,2,0,-1,-1,-1,1,1,1,0,-1).
FORMULA
a(n) = floor((2*n^3 + 54*n^2 + 431*n + 2247 + 81*(n+9)*(-1)^n + 192*cos(2*Pi*n/3)*(floor(n/3)+1))/2592). - Tani Akinari, Aug 13 2013
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^9)), {x, 0, 100}], x] (* Jinyuan Wang, Mar 18 2020 *)
LinearRecurrence[{0, 1, 1, 1, -1, -1, -1, 0, 2, 0, -1, -1, -1, 1, 1, 1, 0, -1}, {1, 0, 1, 1, 2, 1, 3, 2, 4, 4, 5, 5, 8, 7, 9, 10, 12, 12}, 70] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) Vec( 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^9)) + O(x^66) ) \\ Joerg Arndt, Aug 14 2013
(PARI) a(n)=round((2*n^3+54*n^2+399*n+899)/2592+(n%3==0)*n/27+(n+9)*(-1)^n/32) \\ Tani Akinari, Jun 03 2014
CROSSREFS
Sequence in context: A144693 A328399 A328171 * A100927 A001687 A159072
KEYWORD
nonn,easy
STATUS
approved