login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029138 Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^8)). 0
1, 0, 1, 1, 2, 1, 3, 2, 5, 3, 6, 5, 9, 6, 11, 9, 15, 11, 18, 15, 23, 18, 27, 23, 34, 27, 39, 34, 47, 39, 54, 47, 64, 54, 72, 64, 84, 72, 94, 84, 108, 94, 120, 108, 136, 120, 150, 136, 169, 150, 185, 169, 206, 185, 225, 206, 249, 225, 270, 249, 297, 270, 321, 297, 351, 321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number of partitions of n into parts 2, 3, 4, and 8. - Joerg Arndt, Jul 07 2013

LINKS

Table of n, a(n) for n=0..65.

Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,0,-1).

FORMULA

a(n) = floor((2*n^3 + 51*n^2 + 387*n + 1665 + 9*((n^2+17*n+63) + 8*(floor(n/2)+1)*(-1)^floor(n/2))*(-1)^n)/2304). - Tani Akinari, Jul 07 2013

MATHEMATICA

CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^8)), {x, 0, 100}], x] (* Jinyuan Wang, Mar 18 2020 *)

PROG

(PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^8))+O(x^66)) \\ Joerg Arndt, Jul 07 2013

CROSSREFS

Sequence in context: A348112 A045747 A308984 * A161051 A161255 A008731

Adjacent sequences: A029135 A029136 A029137 * A029139 A029140 A029141

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 01:14 EST 2022. Contains 358362 sequences. (Running on oeis4.)