login
A100927
Number of partitions of n into distinct parts free of hexagonal numbers.
1
1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 5, 7, 7, 10, 10, 13, 15, 17, 21, 23, 29, 32, 38, 44, 50, 59, 66, 76, 87, 100, 113, 129, 147, 167, 189, 214, 241, 273, 307, 345, 388, 436, 489, 548, 612, 686, 765, 854, 951, 1059, 1180, 1309, 1456, 1614, 1791, 1985, 2196
OFFSET
1,6
COMMENTS
This is also the inverted graded of the generating function of partitions into parts free of hexagonal numbers
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
FORMULA
G.f.:=product_{k>0}(1+x^k)/(1+x^(2k^2-k))= 1/product_{k>0}(1-x^k+x^(2k)-x^(3k)+...-x^(2k^2-3k)+x^(2k^2-2k))
EXAMPLE
E.g"a(16)=13 because 16=14+2=13+3=12+4=11+5=11+3+2=10+4+2=9+7=9+5+2=9+4+3=8+5+3=7+5+4=7+4+3+2"
MAPLE
series(product((1+x^k)/(1+x^(2*k^(2)-k)), k=1..100), x=0, 100);
CROSSREFS
Sequence in context: A328399 A328171 A029139 * A001687 A159072 A116928
KEYWORD
nonn
AUTHOR
Noureddine Chair, Nov 22 2004
STATUS
approved