OFFSET
1,6
COMMENTS
This is also the inverted graded of the generating function of partitions into parts free of hexagonal numbers
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
FORMULA
G.f.:=product_{k>0}(1+x^k)/(1+x^(2k^2-k))= 1/product_{k>0}(1-x^k+x^(2k)-x^(3k)+...-x^(2k^2-3k)+x^(2k^2-2k))
EXAMPLE
E.g"a(16)=13 because 16=14+2=13+3=12+4=11+5=11+3+2=10+4+2=9+7=9+5+2=9+4+3=8+5+3=7+5+4=7+4+3+2"
MAPLE
series(product((1+x^k)/(1+x^(2*k^(2)-k)), k=1..100), x=0, 100);
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Nov 22 2004
STATUS
approved