OFFSET
1,6
COMMENTS
This is also the inverted graded of the generating function for partitions of n into parts free of octagonal numbers.
LINKS
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
FORMULA
G.f.: product_{k>0}(1+x^k)/(1-(-1)^k*x^(3*k^2-2k)).
EXAMPLE
a(15)=18 because 15 =13+5 =12+3 =11+4 =10+5 =10+3+2 =9+6 =9+4+2 =8+7 =8+4+3 =8+5+2 =7+6+2 =7+5+3 =6+5+4 =6+4+3+2 =5+2+2+2+2+2 =7+2+2+2+2 =4+3+2+2+2+2.
MAPLE
series(product((1+x^k)/(1-(-1)^k*x^(3*k^(2)-2*k)), k=1..100), x=0, 100);
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Nov 23 2004
STATUS
approved