login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027196
Number of partitions of n into an even number of parts, the least being 4; also, a(n+4) = number of partitions of n into an odd number of parts, each >=4.
2
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 50, 58, 70, 81, 97, 113, 134, 156, 185, 214, 252, 292, 343, 396, 463, 534, 623, 718, 833, 958, 1110, 1274, 1471, 1686, 1943, 2223, 2555, 2919, 3347, 3818, 4368
OFFSET
1,16
FORMULA
a(n) + A027190(n) = A026797(n). - R. J. Mathar, Oct 18 2019
G.f.: x^8 * Sum_{k>=0} x^(8*k)/Product_{j=1..2*k+1} (1-x^j). - Seiichi Manyama, May 15 2023
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t,
`if`(i>n, 0, b(n, i+1, t)+b(n-i, i, 1-t)))
end:
a:= n-> `if`(n<4, 0, b(n-4, 4, 0)):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 18 2019
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i, 1 - t]]];
a[n_] := If[n < 4, 0, b[n - 4, 4, 0]];
Array[a, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A008582 A069911 A185225 * A325877 A100928 A240671
KEYWORD
nonn
STATUS
approved