Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 15 2023 11:13:54
%S 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,3,4,5,6,8,9,12,14,17,20,25,29,35,
%T 41,50,58,70,81,97,113,134,156,185,214,252,292,343,396,463,534,623,
%U 718,833,958,1110,1274,1471,1686,1943,2223,2555,2919,3347,3818,4368
%N Number of partitions of n into an even number of parts, the least being 4; also, a(n+4) = number of partitions of n into an odd number of parts, each >=4.
%F a(n) + A027190(n) = A026797(n). - _R. J. Mathar_, Oct 18 2019
%F G.f.: x^8 * Sum_{k>=0} x^(8*k)/Product_{j=1..2*k+1} (1-x^j). - _Seiichi Manyama_, May 15 2023
%p b:= proc(n, i, t) option remember; `if`(n=0, t,
%p `if`(i>n, 0, b(n, i+1, t)+b(n-i, i, 1-t)))
%p end:
%p a:= n-> `if`(n<4, 0, b(n-4, 4, 0)):
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Oct 18 2019
%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i, 1 - t]]];
%t a[n_] := If[n < 4, 0, b[n - 4, 4, 0]];
%t Array[a, 100] (* _Jean-François Alcover_, May 17 2020, after _Alois P. Heinz_ *)
%Y Cf. A026797, A027190.
%K nonn
%O 1,16
%A _Clark Kimberling_