login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008582
Molien series for Weyl group E_8.
2
1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 28, 34, 40, 47, 54, 64, 72, 85, 97, 111, 126, 146, 163, 187, 211, 238, 266, 302, 335, 378, 421, 469, 520, 582, 640, 712, 786, 868, 954, 1055, 1153, 1270, 1391, 1523, 1662, 1822, 1979, 2162, 2352, 2558, 2774, 3018, 3262
OFFSET
0,5
REFERENCES
Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 37).
FORMULA
G.f.: 1/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)).
a(n) ~ 1/13716864000*n^7 (for the sequence without interleaved zeros). - Ralf Stephan, Apr 29 2014
MAPLE
seq(coeff(series( mul(1/((1-x^(3*j+6))*(1-x^(3*j+1))), j=0..3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Feb 02 2020
MATHEMATICA
Select[CoefficientList[Series[1/((1-x^2)(1-x^8)(1-x^12)(1-x^14)(1-x^18) (1-x^20)(1-x^24)(1-x^30)), {x, 0, 180}], x], #!=0&] (* Harvey P. Dale, Jun 09 2011 *)
CoefficientList[Series[Product[1/((1-x^(3*j+6))*(1-x^(3*j+1))), {j, 0, 3}], {x, 0, 60}], x] (* G. C. Greubel, Feb 02 2020 *)
PROG
(Magma) MolienSeries(CoxeterGroup("E8")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(PARI) Vec( prod(j=0, 3, 1/((1-x^(3*j+6))*(1-x^(3*j+1)))) +O('x^60) ) \\ G. C. Greubel, Feb 02 2020
(Sage)
def A008582_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( product(1/((1-x^(3*j+6))*(1-x^(3*j+1))) for j in (0..3)) ).list()
A008582_list(60) # G. C. Greubel, Feb 02 2020
CROSSREFS
Sequence in context: A319069 A029013 A114096 * A069911 A185225 A027196
KEYWORD
nonn,easy,nice
STATUS
approved