Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:44:36
%S 1,1,1,1,2,2,3,4,5,6,8,9,12,14,17,20,25,28,34,40,47,54,64,72,85,97,
%T 111,126,146,163,187,211,238,266,302,335,378,421,469,520,582,640,712,
%U 786,868,954,1055,1153,1270,1391,1523,1662,1822,1979,2162,2352,2558,2774,3018,3262
%N Molien series for Weyl group E_8.
%D Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
%D L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 37).
%H T. D. Noe, <a href="/A008582/b008582.txt">Table of n, a(n) for n = 0..1000</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=252">Encyclopedia of Combinatorial Structures 252</a>
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F G.f.: 1/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)).
%F a(n) ~ 1/13716864000*n^7 (for the sequence without interleaved zeros). - _Ralf Stephan_, Apr 29 2014
%p seq(coeff(series( mul(1/((1-x^(3*j+6))*(1-x^(3*j+1))), j=0..3), x, n+1), x, n), n = 0..60); # _G. C. Greubel_, Feb 02 2020
%t Select[CoefficientList[Series[1/((1-x^2)(1-x^8)(1-x^12)(1-x^14)(1-x^18) (1-x^20)(1-x^24)(1-x^30)),{x,0,180}],x],#!=0&] (* _Harvey P. Dale_, Jun 09 2011 *)
%t CoefficientList[Series[Product[1/((1-x^(3*j+6))*(1-x^(3*j+1))), {j,0,3}], {x, 0, 60}], x] (* _G. C. Greubel_, Feb 02 2020 *)
%o (Magma) MolienSeries(CoxeterGroup("E8")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
%o (PARI) Vec( prod(j=0,3, 1/((1-x^(3*j+6))*(1-x^(3*j+1)))) +O('x^60) ) \\ _G. C. Greubel_, Feb 02 2020
%o (Sage)
%o def A008582_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( product(1/((1-x^(3*j+6))*(1-x^(3*j+1))) for j in (0..3)) ).list()
%o A008582_list(60) # _G. C. Greubel_, Feb 02 2020
%K nonn,easy,nice
%O 0,5
%A _N. J. A. Sloane_