login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008579
Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.
35
1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
OFFSET
0,2
COMMENTS
Interesting because coefficients never become monotonic.
Also the coordination sequence for a planar net made of densely packed circles. - Yuriy Sibirmovsky, Sep 11 2016
Described by J.-G. Eon (2014) as the coordination sequence of the Kagome net. - N. J. A. Sloane, Jan 03 2018
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors).
LINKS
Pierre de La Harpe, and P. I. Grigorchuk, Local convexity of the growth function of finitely generated groups and question 5.2 in the Kourovka Notebook, Algebra and Logic 37.6 (1998): 353-356.
Jean-Guillaume Eon, Topological density of nets: a direct calculation, Acta Crystallographica Section A (Foundations of Crystallography), A60 (2014), 7-18; DOI: 10.1107/S0108767303022037. See Section 5.
Jean-Guillaume Eon, Symmetry and Topology: The 11 Uninodal Planar Nets Revisited, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 4.
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
Reticular Chemistry Structure Resource, kgm
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
FORMULA
G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4)/(1 - x^2)^2.
From R. J. Mathar, Nov 26 2014: (Start)
a(2n) = A017365(n), n > 0.
a(2n+1) = A017137(n), n > 0. (End)
From Stefano Spezia, Aug 07 2022: (Start)
a(n) = (9 + (-1)^n)*n/2 - 2*(-1)^n for n > 1.
E.g.f.: 3 - 2*x + (4*x - 2)*cosh(x) + (5*x + 2)*sinh(x). (End)
MAPLE
f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi;
MATHEMATICA
a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 18 2011, after Maple *)
CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2, {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 2, 0, -1}, {1, 4, 8, 14, 18, 22}, 50] (* Harvey P. Dale, Sep 05 2018 *)
PROG
(Haskell)
a008579 0 = 1
a008579 1 = 4
a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n', m) = divMod n 2
a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1, 4*x+3]) [1..]
-- Reinhard Zumkeller, Nov 12 2012
CROSSREFS
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Sequence in context: A312502 A312503 A312504 * A312505 A312506 A312507
KEYWORD
nonn,nice,easy
STATUS
approved