This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008577 Crystal ball sequence for planar net 4.8.8. 4
 1, 4, 9, 17, 28, 41, 57, 76, 97, 121, 148, 177, 209, 244, 281, 321, 364, 409, 457, 508, 561, 617, 676, 737, 801, 868, 937, 1009, 1084, 1161, 1241, 1324, 1409, 1497, 1588, 1681, 1777, 1876, 1977, 2081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 W. M. Meier and H. J. Moeck, Topology of 3-D 4-connected nets ..., J. Solid State Chem 27 1979 349-355, esp. p. 351. Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1). FORMULA G.f.: ((1+x)^2*(1+x^2)) / ((1-x)^3*(1+x+x^2)). - Ralf Stephan, Apr 24 2004 a(n) = 4*(n/3)*(n+1)+10/9+A099837(n+2)/9. - R. J. Mathar, Nov 20 2010 The above g.f. and formula were originally stated as conjectures, but I now have a proof. This also justifies the b-file. Details will be added later. - N. J. A. Sloane, Dec 29 2015 MATHEMATICA A099837[0] = 1; A099837[n_] := Mod[n+2, 3] - Mod[n, 3]; a[n_] := 4*n/3*(n+1) + 10/9 + A099837[n+2]/9; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Feb 15 2012, after R. J. Mathar *) CoefficientList[Series[((1 + x)^2 (1 + x^2))/((1 - x)^3 (1 + x + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 31 2015 *) CROSSREFS Partial sums of A008576. Cf. A099837. Sequence in context: A033617 A033613 A033608 * A033605 A008137 A008023 Adjacent sequences:  A008574 A008575 A008576 * A008578 A008579 A008580 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.