login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008137
Coordination sequence T1 for Zeolite Code LTA and RHO.
71
1, 4, 9, 17, 28, 42, 60, 81, 105, 132, 162, 196, 233, 273, 316, 362, 412, 465, 521, 580, 642, 708, 777, 849, 924, 1002, 1084, 1169, 1257, 1348, 1442, 1540, 1641, 1745, 1852, 1962, 2076, 2193, 2313, 2436, 2562, 2692, 2825, 2961, 3100, 3242, 3388, 3537, 3689
OFFSET
0,2
COMMENTS
Also, growth series for the affine Coxeter (or Weyl) groups B_3. - N. J. A. Sloane, Jan 11 2016
Also, coordination sequence for "rho" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #25 and 27.
W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.
LINKS
R. W. Grosse-Kunstleve, Table of n, a(n) for n = 0..1000
R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
International Zeolite Association, Database of Zeolite Structures
Reticular Chemistry Structure Resource (RCSR), The lta tiling (or net)
Reticular Chemistry Structure Resource (RCSR), The rho tiling (or net)
FORMULA
a(5*m+k) = 40*m^2 + 16*k*m + one of 5 numbers depending on k, 0 <= k < 5 (N. J. A. Sloane).
G.f.: (1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5)). This can also be written as (x+1)^3*(x^2+1)*(x^2-x+1)/((1-x)^3*(x^4+x^3+x^2+x+1)). - N. J. A. Sloane, Feb 10 2018
a(n) = 12/5 - 0^n + (8/5)*n^2 - (1/25)*(5+sqrt(5))*cos(2*Pi*n/5) - (1/25)*(5-sqrt(5))*cos(4*Pi*n/5). - Eric Simon Jacob, Feb 12 2023
MAPLE
(1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5));
seq(coeff(series(%, x, n+1), x, n), n=0..48);
CROSSREFS
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.
For partial sums see A299276.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A008577 A033605 A301018 * A008023 A008055 A301019
KEYWORD
nonn,easy
STATUS
approved