The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008137 Coordination sequence T1 for Zeolite Code LTA and RHO. 71
1, 4, 9, 17, 28, 42, 60, 81, 105, 132, 162, 196, 233, 273, 316, 362, 412, 465, 521, 580, 642, 708, 777, 849, 924, 1002, 1084, 1169, 1257, 1348, 1442, 1540, 1641, 1745, 1852, 1962, 2076, 2193, 2313, 2436, 2562, 2692, 2825, 2961, 3100, 3242, 3388, 3537, 3689 (list; graph; refs; listen; history; text; internal format)



Also, growth series for the affine Coxeter (or Weyl) groups B_3. - N. J. A. Sloane, Jan 11 2016

Also, coordination sequence for "rho" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018


N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #25 and 27.

W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.


R. W. Grosse-Kunstleve, Table of n, a(n) for n = 0..1000

R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences

R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.

Sean A. Irvine, Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane

International Zeolite Association, Database of Zeolite Structures

Reticular Chemistry Structure Resource (RCSR), The lta tiling (or net)

Reticular Chemistry Structure Resource (RCSR), The rho tiling (or net)

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).


a(5*m+k) = 40*m^2 + 16*k*m + one of 5 numbers depending on k, 0<=k<5 (N. J. A. Sloane).

G.f.: (1-x^2)*(1-x^4)*(1-x^6)/((1-x)^4*(1-x^3)*(1-x^5)). This can also be written as (x+1)^3*(x^2+1)*(x^2-x+1)/((1-x)^3*(x^4+x^3+x^2+x+1)). - N. J. A. Sloane, Feb 10 2018




The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

For partial sums see A299276.

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Sequence in context: A008577 A033605 A301018 * A008023 A008055 A301019

Adjacent sequences:  A008134 A008135 A008136 * A008138 A008139 A008140




Ralf W. Grosse-Kunstleve



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 21:35 EST 2021. Contains 340247 sequences. (Running on oeis4.)