The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1. 67
 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials. Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - Mikhail Gaichenkov, Feb 08 2023 LINKS Paul D. Hanna, Rows n=0..30 of triangle, in flattened form. Hasan Arslan, A combinatorial interpretation of Mahonian numbers of type B, arXiv:2404.05099 [math.CO], 2024. Thomas Kahle and Christian Stump, Counting inversions and descents of random elements in finite Coxeter groups, arXiv:1802.01389 [math.CO], 2018-2019. Ali Kessouri, Moussa Ahmia, Hasan Arslan, and Salim Mesbahi, Combinatorics of q-Mahonian numbers of type B and log-concavity, arXiv:2408.02424 [math.CO], 2024. See p. 6. Eric Weisstein's World of Mathematics, q-Factorial. A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012. A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013. A. V. Yurkin, New binomial and new view on light theory, LAP Lambert Academic Publishing, 2013, 78 pages. EXAMPLE The row sums form A000165, the even double factorial numbers: [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...]. Triangle begins: 1; 1, 1; 1, 2, 2, 2, 1; 1, 3, 5, 7, 8, 8, 7, 5, 3, 1; 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1; ... MATHEMATICA t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *) PROG (PARI) {T(n, k) = if(k<0||k>n^2, 0, if(n==0, 1, polcoeff( prod(j=1, n, (1-q^(2*j))/(1-q)), k, q) ))} for(n=0, 8, for(k=0, n^2, print1(T(n, k), ", ")); print("")) CROSSREFS Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths). The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. Sequence in context: A152067 A286756 A193884 * A131823 A089722 A172356 Adjacent sequences: A128081 A128082 A128083 * A128085 A128086 A128087 KEYWORD nonn,tabf AUTHOR Paul D. Hanna, Feb 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 12:06 EDT 2024. Contains 375987 sequences. (Running on oeis4.)