login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193884
Expansion of o.g.f. (1-x^2)/(1-x+x^4).
2
1, 1, 0, 0, -1, -2, -2, -2, -1, 1, 3, 5, 6, 5, 2, -3, -9, -14, -16, -13, -4, 10, 26, 39, 43, 33, 7, -32, -75, -108, -115, -83, -8, 100, 215, 298, 306, 206, -9, -307, -613, -819, -810, -503, 110, 929, 1739, 2242, 2132, 1203, -536, -2778, -4910, -6113, -5577
OFFSET
0,6
COMMENTS
The Kn11 sums, see A180662, of triangle A108299 equal the terms of this sequence.
FORMULA
G.f.: (1+x)*(1-x)/(1-x+x^4).
a(n) = a(n-1)-a(n-4), a(0) = a(1) = 1, a(2) = a(3) = 0.
a(n) = A099530(n) - A099530(n-2).
MAPLE
A193884 := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 0 elif n=3 then 0 elif n>=4 then procname(n-1)-procname(n-4) fi: end: seq(A193884(n), n=0..54);
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x+x^4), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, -1}, {1, 1, 0, 0}, 80] (* Harvey P. Dale, Jul 15 2020 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Johannes W. Meijer, Aug 11 2011
STATUS
approved