OFFSET
0,1
COMMENTS
This number arises as an addend in one way of giving the closed form of sum(k>=0, (-1)^k/(4*k + 1) ), for example, in Spiegel et al. (2009).
REFERENCES
Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equation 21.17
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Piotr Garbaczewski and Vladimir Stephanovich, Semigroup modeling of confined Levy flights, arXiv:1106.1530 [cond-mat.stat-mech], 2011, p. 8, equation 40.
FORMULA
Equals Pi/(4*sqrt(2)).
Equals Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)). - Peter Bala, Sep 21 2016
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 8) dx.
Equals Integral_{x=0..oo} 1/(8*x^2 + 1) dx.
Equals Integral_{x=0..oo} 1/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7) dx. (End)
EXAMPLE
0.55536036726979578088...
MATHEMATICA
RealDigits[(Pi Sqrt[2])/8, 10, 100][[1]]
PROG
(PARI) Pi*sqrt(2)/8 \\ G. C. Greubel, Feb 02 2018
(Magma) R:= RealField(); Pi(R)*Sqrt(2)/8; // G. C. Greubel, Feb 02 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Alonso del Arte, Aug 07 2011
STATUS
approved