The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254609 Triangle read by rows: T(n,k) = A243757(n)/(A243757(k)*A243757(n-k)). 3
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 5, 5 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 COMMENTS These are the generalized binomial coefficients associated with A060904. The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 5 using the traditional addition algorithm. If T(n,k) != 0 mod 5, then n dominates k in base 5. A194459(n) = number of ones in row n. - Reinhard Zumkeller, Feb 04 2015 LINKS Reinhard Zumkeller, Rows n = 0..124 of triangle, flattened Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143. Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013. Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. FORMULA T(n,k) = A243757(n)/(A243757(k)*A243757(n-k)). T(n,k) = Product_{i=1..n} A060904(i)/(Product_{i=1..k} A060904(i)*Product_{i=1..n-k} A060904(i)). T(n,k) = A060904(n)/n*(k/A060904(k)*T(n-1,k-1)+(n-k)/A060904(n-k)*T(n-1,k)). EXAMPLE The first five terms in A060904 are 1, 1, 1, 1, and 5 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(5,3) = 5*1*1*1*1/((1*1*1)*(1*1))=5. The triangle begins: 1 1, 1 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1 1, 5, 5, 5, 5, 1 1, 1, 5, 5, 5, 1, 1 1, 1, 1, 5, 5, 1, 1, 1 1, 1, 1, 1, 5, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1 1, 1, 1, 5, 5, 1, 1, 1, 5, 5, 1, 1, 1 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 PROG P=[0]+[5^valuation(i, 5) for i in [1..100]] [m for sublist in [[mul(P[1:n+1])/(mul(P[1:k+1])*mul(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] for m in sublist] (Haskell) import Data.List (inits) a254609 n k = a254609_tabl !! n !! k a254609_row n = a254609_tabl !! n a254609_tabl = zipWith (map . div)    a243757_list \$ zipWith (zipWith (*)) xss \$ map reverse xss    where xss = tail \$ inits a243757_list -- Reinhard Zumkeller, Feb 04 2015 CROSSREFS Cf. A060904, A243757, A234957, A242849, A082907. Cf. A194459. Sequence in context: A193887 A196998 A232614 * A133707 A171372 A083945 Adjacent sequences:  A254606 A254607 A254608 * A254610 A254611 A254612 KEYWORD nonn,tabl AUTHOR Tom Edgar, Feb 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 20:17 EST 2021. Contains 349425 sequences. (Running on oeis4.)