login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196998
Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) at which a line y=m*x meets the curve y=cos(5x/2) orthogonally.
2
1, 0, 5, 5, 5, 3, 7, 1, 3, 5, 0, 7, 5, 4, 7, 5, 2, 4, 9, 8, 5, 4, 1, 4, 8, 4, 1, 7, 8, 9, 2, 2, 9, 0, 3, 5, 4, 1, 2, 2, 2, 7, 9, 8, 0, 6, 9, 6, 2, 7, 3, 2, 9, 7, 3, 0, 4, 0, 0, 8, 2, 4, 1, 7, 5, 4, 1, 5, 4, 5, 5, 4, 2, 8, 0, 0, 9, 4, 4, 9, 3, 6, 6, 6, 9, 4, 4, 5, 9, 1, 5, 5, 0, 4, 5, 7, 4, 7, 1, 5
OFFSET
1,3
COMMENTS
See the Mathematica program for a graph.
xo=1.055537135075475249854148417892290354122...
yo=0.481836913462240473673427172075977637742...
m=0.4564850420234501281397606474354137170643...
|OP|=1.1603126538559168441096914160911620183...
MATHEMATICA
c = 5/2;
xo = x /. FindRoot[0 == x + c*Sin[c*x] Cos[c*x], {x, .8, 1.2}, WorkingPrecision -> 100]
RealDigits[xo] (* A196998 *)
m = Sin[c*xo]/xo
RealDigits[m] (* A196999 *)
yo = m*xo
d = Sqrt[xo^2 + yo^2]
Show[Plot[{Sin[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi/c}],
ContourPlot[{y == m*x}, {x, 0, Pi/c}, {y, -.1, 1}], PlotRange -> All, AspectRatio -> Automatic]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 09 2011
STATUS
approved