login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196995 Determinant of Killing form K(x,y) of the Lie algebra sl(n,C) for n >=1. 0
0, -128, -5038848, 140737488355328, 5000000000000000000000000, -354400937492545922690672153504784580608, -72317557999158469111384459491956546088110808312359944192, 57896044618658097711785492504343953926634992332820282019728792003956564819968 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
K(x,y) = 2n*Tr(xy)
REFERENCES
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972, 21-22
LINKS
FORMULA
a(n) = (-1)^binomial(n,2) *2^(n^2-1)*n^(n^2) for n>= 2
MAPLE
interface(rtablesize=infinity):
with(LinearAlgebra):
for n from 1 to 12 do
for i from 1 by 1 to n-1 do
M[i] := Matrix(n);
M[i](i, i) := 1;
M[i](i+1, i+1) := -1;
end do:
ctr := n:
for i from 1 by 1 to n do
for j from 1 by 1 to n do
if(i <> j) then
M[ctr] := Matrix(n);
M[ctr](i, j) := 1;
ctr := ctr +1;
end if
end do:
end do:
A := Matrix(n^2-1):
for i from 1 by 1 to n^2-1 do
for j from 1 by 1 to n^2-1 do
A(i, j) := 2*n*Trace(M[i].M[j]):
end do:
end do:
print(Determinant(A));
end do:
# Alternatively, using the second description
print(0);
for n from 2 to 20 do
print((-1)^(binomial(n, 2))*2^(n^2-1)*n^(n^2));
end do:
CROSSREFS
Sequence in context: A016939 A346008 A017011 * A214389 A017095 A017191
KEYWORD
easy,sign
AUTHOR
Carmen Bruni, Oct 08 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 13:44 EDT 2024. Contains 375938 sequences. (Running on oeis4.)