login
A196997
Decimal expansion of m, where y=m*x is the line through (0,0) which meets the curve y=cos(3*x) orthogonally at a point (x,y) satisfying 0 < x < 2*Pi.
3
3, 5, 3, 1, 4, 0, 0, 6, 5, 6, 5, 9, 1, 2, 0, 9, 6, 7, 5, 5, 6, 6, 6, 1, 1, 1, 4, 1, 2, 7, 8, 5, 0, 3, 1, 9, 5, 4, 3, 7, 5, 6, 8, 5, 5, 0, 1, 6, 0, 6, 6, 8, 4, 3, 1, 8, 7, 7, 3, 8, 6, 5, 9, 0, 5, 2, 8, 4, 7, 1, 6, 5, 0, 1, 6, 9, 6, 6, 2, 4, 3, 6, 0, 2, 0, 2, 7, 0, 6, 6, 2, 2, 6, 8, 7, 7, 1, 8, 7
OFFSET
0,1
COMMENTS
See the Mathematica program for a graph.
xo=0.9350272884749678361451944275323...
yo=0.3301955980451199836007253971727...
m=0.35314006565912096755666111412785...
|OP|=0.99161744799152518925689622748...
MATHEMATICA
c = 3;
xo = x /. FindRoot[0 == x + c*Sin[c*x] Cos[c*x], {x, .8, 1.2}, WorkingPrecision -> 100]
RealDigits[xo] (* A196996 *)
m = Sin[c*xo]/xo
RealDigits[m] (* A196997 *)
yo = m*xo
d = Sqrt[xo^2 + yo^2]
Show[Plot[{Sin[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi/c}], ContourPlot[{y == m*x}, {x, 0, 1.5}, {y, -.1, 1}], PlotRange -> All, AspectRatio -> Automatic]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 09 2011
STATUS
approved