login
A346008
Order of the full automorphism group of an n^2 X n^2 Sudoku puzzle.
0
1, 128, 3359232, 126806761930752, 17832200896512000000000000, 20122639448358307421277388800000000000000, 346671850578027965617950152200042758191185920000000000000000, 158635147791426908154211087484339310324630213259159597497553256448000000000000000000, 3135383389315524601627656266493367412334920325664589642523187933340624422000766361791574835200000000000000000000
OFFSET
1,2
COMMENTS
a(n) is the order of the automorphism group of the n^2 X n^2 Sudoku graph (see A182866).
FORMULA
a(n) = 2*(n!)^(2n+2) for n > 1.
EXAMPLE
For n=2, a(2) = 128 is the number of symmetries of a Shidoku puzzle.
For n=3, a(3) = 3359232 is the number of symmetries of standard 9 X 9 Sudoku puzzle.
MATHEMATICA
Join[{1}, Table[2*n!^(2*n+2), {n, 2, 9}]] (* Stefano Spezia, Jul 27 2021 *)
PROG
(SageMath)
M = matrix(n^4, n^4)
for i in [0..n^4-1]:
for j in [0..n^4-1]:
if i!=j:
if i%n^2==j%n^2:
M[i, j]=1
if floor(i/n^2)==floor(j/n^2):
M[i, j]=1
D = Graph(M, format='adjacency_matrix')
for col in [0..n-1]:
for row in [0..n-1]:
tl = n*col + n^3*row
s = []
for i in [0..n-1]:
for j in [0..n-1]:
s.append(tl + i + n^2*j)
D.add_clique(s)
print(D.automorphism_group().order())
CROSSREFS
Cf. A159299.
Sequence in context: A016879 A227661 A016939 * A017011 A196995 A214389
KEYWORD
nonn
STATUS
approved