login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346008
Order of the full automorphism group of an n^2 X n^2 Sudoku puzzle.
0
1, 128, 3359232, 126806761930752, 17832200896512000000000000, 20122639448358307421277388800000000000000, 346671850578027965617950152200042758191185920000000000000000, 158635147791426908154211087484339310324630213259159597497553256448000000000000000000, 3135383389315524601627656266493367412334920325664589642523187933340624422000766361791574835200000000000000000000
OFFSET
1,2
COMMENTS
a(n) is the order of the automorphism group of the n^2 X n^2 Sudoku graph (see A182866).
FORMULA
a(n) = 2*(n!)^(2n+2) for n > 1.
EXAMPLE
For n=2, a(2) = 128 is the number of symmetries of a Shidoku puzzle.
For n=3, a(3) = 3359232 is the number of symmetries of standard 9 X 9 Sudoku puzzle.
MATHEMATICA
Join[{1}, Table[2*n!^(2*n+2), {n, 2, 9}]] (* Stefano Spezia, Jul 27 2021 *)
PROG
(SageMath)
M = matrix(n^4, n^4)
for i in [0..n^4-1]:
for j in [0..n^4-1]:
if i!=j:
if i%n^2==j%n^2:
M[i, j]=1
if floor(i/n^2)==floor(j/n^2):
M[i, j]=1
D = Graph(M, format='adjacency_matrix')
for col in [0..n-1]:
for row in [0..n-1]:
tl = n*col + n^3*row
s = []
for i in [0..n-1]:
for j in [0..n-1]:
s.append(tl + i + n^2*j)
D.add_clique(s)
print(D.automorphism_group().order())
CROSSREFS
Cf. A159299.
Sequence in context: A016879 A227661 A016939 * A017011 A196995 A214389
KEYWORD
nonn
STATUS
approved