login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346009
a(n) is the numerator of the average number of distinct prime factors of the divisors of n.
9
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 7, 1, 1, 1, 4, 1, 7, 1, 7, 1, 1, 1, 5, 2, 1, 3, 7, 1, 3, 1, 5, 1, 1, 1, 4, 1, 1, 1, 5, 1, 3, 1, 7, 7, 1, 1, 13, 2, 7, 1, 7, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 7, 6, 1, 3, 1, 7, 1, 3, 1, 17, 1, 1, 7, 7, 1, 3, 1, 13, 4, 1, 1, 5, 1, 1
OFFSET
1,4
LINKS
R. L. Duncan, Note on the divisors of a number, The American Mathematical Monthly, Vol. 68, No. 4 (1961), pp. 356-359.
Sébastien Gaboury, Sur les convolutions de fonctions arithmétiques, M.Sc. thesis, Laval University, Quebec, 2007.
FORMULA
Let f(n) = a(n)/A346010(n) be the sequence of fractions. Then:
f(n) = A062799(n)/A000005(n).
f(n) = (Sum_{p prime, p|n} d(n/p))/d(n), where d(n) is the number of divisors of n (A000005).
f(n) depends only on the prime signature of n: If n = Product_{i} p_i^e_i, then a(n) = Sum_{i} e_i/(e_i + 1).
f(p) = 1/2 for prime p.
f(n) = 1 for squarefree semiprimes n (A006881).
Sum_{k=1..n} f(k) ~ (1/2) * A013939(n) + C*n + O(n/log(n)) ~ n*log(log(n))/2 + (B/2 + C)*n + O(n/log(n)), where B is Mertens's constant (A077761) and C = A346011 (Duncan, 1961).
EXAMPLE
The fractions begin with 0, 1/2, 1/2, 2/3, 1/2, 1, 1/2, 3/4, 2/3, 1, 1/2, 7/6, ...
f(2) = 1/2 since 2 has 2 divisors, 1 and 2, and (omega(1) + omega(2))/2 = (0 + 1)/2 = 1/2.
f(6) = 1 since 6 has 4 divisors, 1, 2, 3 and 6 and (omega(1) + omega(2) + omega(3) + omega(6))/4 = (0 + 1 + 1 + 2)/4 = 1.
MATHEMATICA
a[n_] := Numerator[DivisorSum[n, PrimeNu[#] &]/DivisorSigma[0, n]]; Array[a, 100]
(* or *)
f[p_, e_] := e/(e+1); a[1] = 0; a[n_] := Numerator[Plus @@ f @@@ FactorInteger[n]]; Array[a, 100]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Jul 01 2021
STATUS
approved