login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346011
Decimal expansion of Sum_{p prime} (1 - 1/(2*p) + (p - 1)*log(1 - 1/p)).
2
9, 5, 6, 2, 8, 1, 9, 7, 3, 1, 4, 1, 0, 3, 3, 3, 1, 4, 1, 1, 6, 1, 3, 3, 8, 1, 6, 1, 3, 3, 5, 1, 6, 4, 5, 0, 9, 1, 6, 3, 3, 9, 3, 1, 5, 0, 4, 2, 5, 2, 2, 2, 1, 3, 5, 9, 3, 4, 0, 7, 0, 3, 0, 1, 2, 7, 1, 0, 4, 7, 0, 8, 6, 9, 7, 1, 2, 0, 7, 1, 0, 1, 9, 4, 7, 4, 2, 1, 8, 8, 1, 0, 5, 3, 2, 8, 5, 3, 4, 5
OFFSET
-1,1
COMMENTS
This constant appears in the asymptotic formula for A346009(n)/A346010(n), the average number of distinct prime factors of the divisors of n.
The asymptotic mean of A346012(n)/A346013(n).
LINKS
R. L. Duncan, Note on the divisors of a number, The American Mathematical Monthly, Vol. 68, No. 4 (1961), pp. 356-359.
Sébastien Gaboury, Sur les convolutions de fonctions arithmétiques, M.Sc. thesis, Laval University, Quebec, 2007.
FORMULA
Equals Sum_{k>=2} P(k)/(k*(k+1)), where P(s) is the prime zeta function.
EXAMPLE
0.09562819731410333141161338161335164509163393150425...
MATHEMATICA
$MaxExtraPrecision = 500; m = 500; RealDigits[NSum[(PrimeZetaP[n])/(n*(n + 1)), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jul 01 2021
STATUS
approved