login
A262276
Decimal expansion of Toth's constant (or digits of the density of the exponentially squarefree numbers).
5
9, 5, 5, 9, 2, 3, 0, 1, 5, 8, 6, 1, 9, 0, 2, 3, 7, 6, 8, 8, 4, 0, 6, 5, 3, 8, 6, 7, 0, 9, 8, 7, 0, 0, 7, 4, 6, 7, 7, 1, 5, 9, 4, 3, 1, 6, 5, 4, 5, 6, 8, 6, 8, 8, 3, 2, 8, 0, 5, 8, 9, 4, 9, 0, 1, 8, 1, 7, 2, 8, 7, 0, 1, 5, 5, 2, 2, 9, 2, 5, 7, 1, 0, 3, 5, 7, 2, 0, 0, 5, 5, 9, 1, 1, 6, 4, 4, 0, 3, 5, 2, 3, 0, 1, 2, 9, 3, 3, 4, 7, 1, 7, 1, 5, 8, 0, 1, 2, 2, 4, 3, 6, 3, 9, 8, 9, 3, 3, 8, 8, 1, 2, 0, 3, 8, 6, 6, 0, 1, 3, 2, 8, 6, 3, 2, 6, 7, 5, 2, 0, 6, 6, 3, 5, 8, 0, 2, 7, 1, 7, 9, 6, 0
OFFSET
0,1
LINKS
Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
Laszlo Tóth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
FORMULA
Equals Product_{prime p} (1+Sum_{j>=4} (mu(j)^2 - mu(j-1)^2)/p^j), where mu(n) is the Möbius function.
EXAMPLE
0.95592301586190237688406538670987007467715943165456868832805...
CROSSREFS
Density of A209061.
Sequence in context: A155534 A154683 A200026 * A244844 A255896 A346011
KEYWORD
nonn,cons
AUTHOR
Juan Arias-de-Reyna, Sep 19 2015
STATUS
approved