This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244844 Decimal expansion of 2F1(1, 1/4; 5/4; -1/4), where 2F1 is a Gaussian hypergeometric function. 1
 9, 5, 5, 9, 3, 3, 8, 3, 7, 0, 0, 5, 5, 7, 0, 3, 4, 5, 1, 5, 8, 7, 2, 2, 5, 6, 3, 3, 9, 5, 8, 1, 5, 4, 2, 9, 9, 1, 6, 4, 2, 4, 1, 6, 1, 2, 6, 7, 8, 4, 5, 7, 5, 3, 8, 1, 6, 4, 3, 1, 5, 7, 6, 5, 8, 5, 3, 9, 9, 9, 1, 6, 4, 1, 5, 5, 9, 5, 8, 3, 8, 1, 6, 4, 2, 4, 2, 0, 3, 3, 8, 6, 6, 3, 8, 0, 2, 2, 3, 4, 1, 7, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant is mentioned by Bailey & Borwein as an example of the use of the PSLQ integer relation algorithm to discover new formulas. LINKS D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014. p. 14. [broken link] Eric Weisstein's MathWorld, Hypergeometric Function. Eric Weisstein's MathWorld, PSLQ Algorithm. FORMULA 4*2F1(1, 1/4; 5/4; -1/4) + 2*arctan(1/2) - log(5) = Pi. EXAMPLE 0.9559338370055703451587225633958154299164241612678457538164315765853999... MATHEMATICA Hypergeometric2F1[1, 1/4, 5/4, -1/4] // RealDigits[#, 10, 104]& // First CROSSREFS Sequence in context: A154683 A200026 A262276 * A255896 A019882 A292824 Adjacent sequences:  A244841 A244842 A244843 * A244845 A244846 A244847 KEYWORD cons,nonn AUTHOR Jean-François Alcover, Jul 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 22:55 EDT 2019. Contains 328244 sequences. (Running on oeis4.)