login
A244844
Decimal expansion of 2F1(1, 1/4; 5/4; -1/4), where 2F1 is a Gaussian hypergeometric function.
1
9, 5, 5, 9, 3, 3, 8, 3, 7, 0, 0, 5, 5, 7, 0, 3, 4, 5, 1, 5, 8, 7, 2, 2, 5, 6, 3, 3, 9, 5, 8, 1, 5, 4, 2, 9, 9, 1, 6, 4, 2, 4, 1, 6, 1, 2, 6, 7, 8, 4, 5, 7, 5, 3, 8, 1, 6, 4, 3, 1, 5, 7, 6, 5, 8, 5, 3, 9, 9, 9, 1, 6, 4, 1, 5, 5, 9, 5, 8, 3, 8, 1, 6, 4, 2, 4, 2, 0, 3, 3, 8, 6, 6, 3, 8, 0, 2, 2, 3, 4, 1, 7, 2, 6
OFFSET
0,1
COMMENTS
This constant is mentioned by Bailey & Borwein as an example of the use of the PSLQ integer relation algorithm to discover new formulas.
LINKS
D. H. Bailey and J. M. Borwein, Experimental computation as an ontological game changer, 2014, p. 14.
Eric Weisstein's MathWorld, Hypergeometric Function.
Eric Weisstein's MathWorld, PSLQ Algorithm.
FORMULA
4*2F1(1, 1/4; 5/4; -1/4) + 2*arctan(1/2) - log(5) = Pi.
EXAMPLE
0.9559338370055703451587225633958154299164241612678457538164315765853999...
MATHEMATICA
Hypergeometric2F1[1, 1/4, 5/4, -1/4] // RealDigits[#, 10, 104]& // First
CROSSREFS
Sequence in context: A154683 A200026 A262276 * A255896 A346011 A019882
KEYWORD
cons,nonn
AUTHOR
STATUS
approved