login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346007
Let b=5. If n == -i (mod b) for 0 <= i < b, then a(n) = binomial(b,i+1)*((n+i)/b)^(i+1).
5
0, 1, 5, 10, 10, 5, 32, 80, 80, 40, 10, 243, 405, 270, 90, 15, 1024, 1280, 640, 160, 20, 3125, 3125, 1250, 250, 25, 7776, 6480, 2160, 360, 30, 16807, 12005, 3430, 490, 35, 32768, 20480, 5120, 640, 40, 59049, 32805, 7290, 810, 45, 100000, 50000, 10000, 1000, 50
OFFSET
0,3
COMMENTS
These are the numbers that would arise if the Moessner construction on page 64 of Conway-Guy's "Book of Numbers" were extended to the fifth powers.
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996. See pp. 63-64.
MAPLE
f:=proc(n, b) local i;
for i from 0 to b-1 do
if ((n+i) mod b) = 0 then return(binomial(b, i+1)*((n+i)/b)^(i+1)); fi;
od;
end;
[seq(f(n, 5), n=0..80)];
PROG
(Python)
from sympy import binomial
def A346007(n):
i = (5-n)%5
return binomial(5, i+1)*((n+i)//5)**(i+1) # Chai Wah Wu, Jul 25 2021
CROSSREFS
Setting b = 2, 3, or 4 gives A346004, A346005, and A346006.
Sequence in context: A280718 A321357 A065755 * A135912 A200990 A040020
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 25 2021
STATUS
approved