The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346007 Let b=5. If n == -i (mod b) for 0 <= i < b, then a(n) = binomial(b,i+1)*((n+i)/b)^(i+1). 5
 0, 1, 5, 10, 10, 5, 32, 80, 80, 40, 10, 243, 405, 270, 90, 15, 1024, 1280, 640, 160, 20, 3125, 3125, 1250, 250, 25, 7776, 6480, 2160, 360, 30, 16807, 12005, 3430, 490, 35, 32768, 20480, 5120, 640, 40, 59049, 32805, 7290, 810, 45, 100000, 50000, 10000, 1000, 50 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These are the numbers that would arise if the Moessner construction on page 64 of Conway-Guy's "Book of Numbers" were extended to the fifth powers. REFERENCES J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996. See pp. 63-64. LINKS Table of n, a(n) for n=0..50. MAPLE f:=proc(n, b) local i; for i from 0 to b-1 do if ((n+i) mod b) = 0 then return(binomial(b, i+1)*((n+i)/b)^(i+1)); fi; od; end; [seq(f(n, 5), n=0..80)]; PROG (Python) from sympy import binomial def A346007(n): i = (5-n)%5 return binomial(5, i+1)*((n+i)//5)**(i+1) # Chai Wah Wu, Jul 25 2021 CROSSREFS Setting b = 2, 3, or 4 gives A346004, A346005, and A346006. Cf. A125714, A346595. Sequence in context: A280718 A321357 A065755 * A135912 A200990 A040020 Adjacent sequences: A346004 A346005 A346006 * A346008 A346009 A346010 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 18:48 EDT 2024. Contains 375023 sequences. (Running on oeis4.)