login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194459
Number of entries in the n-th row of Pascal's triangle not divisible by 5.
5
1, 2, 3, 4, 5, 2, 4, 6, 8, 10, 3, 6, 9, 12, 15, 4, 8, 12, 16, 20, 5, 10, 15, 20, 25, 2, 4, 6, 8, 10, 4, 8, 12, 16, 20, 6, 12, 18, 24, 30, 8, 16, 24, 32, 40, 10, 20, 30, 40, 50, 3, 6, 9, 12, 15, 6, 12, 18, 24, 30, 9, 18, 27, 36, 45, 12, 24, 36, 48, 60, 15, 30
OFFSET
0,2
COMMENTS
Pascal triangles modulo p with p prime have the dimension D = log(p*(p+1)/2)/log(p). [Corrected by Connor Lane, Nov 28 2022]
Also number of ones in row n of triangle A254609. - Reinhard Zumkeller, Feb 04 2015
LINKS
FORMULA
a(n) = Product_{d=1..4} (d+1)^b(n,d) with b(n,d) = number of digits d in base 5 expansion of n. The formula generalizes to other prime bases p.
a(n) = A194458(n) - A194458(n-1).
EXAMPLE
n = 32 = 112|_5: b(32,1) = 2, b(32,2) = 1, thus a(32) = 2^2 * 3^1 = 12.
MAPLE
a:= proc(n) local l, m, t;
m:= n;
l:= [0$5];
while m>0 do t:= irem(m, 5, 'm')+1; l[t]:=l[t]+1 od;
mul(r^l[r], r=2..5)
end:
seq(a(n), n=0..100);
MATHEMATICA
Nest[Join[#, 2#, 3#, 4#, 5#]&, {1}, 4] (* Jean-François Alcover, Apr 12 2017, after code by Robert G. Wilson v in A006047 *)
PROG
(Haskell)
a194459 = sum . map (signum . flip mod 5) . a007318_row
-- Reinhard Zumkeller, Feb 04 2015
CROSSREFS
Cf. A006046, A001316 (for p=2).
Cf. A006048, A006047 (for p=3).
Cf. A194458 (for p=5).
Sequence in context: A141809 A309435 A043265 * A143120 A353277 A308201
KEYWORD
nonn,look
AUTHOR
Paul Weisenhorn, Aug 24 2011
EXTENSIONS
Edited by Alois P. Heinz, Sep 06 2011
STATUS
approved