login
A194461
Numbers m such that Sum_{k=1..m} (<c + k*r> - <k*r>) < 0, where r=(1+sqrt(5))/2 and c=(-1+sqrt(5))/4, and < > denotes fractional part.
1
3, 6, 8, 9, 11, 12, 16, 19, 21, 22, 24, 25, 29, 32, 42, 45, 55, 58, 61, 63, 64, 66, 67, 71, 74, 76, 77, 79, 80, 84, 87, 97, 100, 110, 113, 116, 118, 119, 121, 122, 126, 129, 131, 132, 134, 135, 139, 142, 144, 145, 147, 148, 150, 151, 152, 153, 154, 155, 156
OFFSET
1,1
COMMENTS
See A194368.
MATHEMATICA
r = GoldenRatio; c = (1/2) FractionalPart[r];
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t1, 1]] (* A184461 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t3, 1]] (* A184462 *)
CROSSREFS
Cf. A194368.
Sequence in context: A190234 A036558 A005870 * A186385 A335155 A231005
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 24 2011
STATUS
approved