login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194456
E.g.f.: Sum_{n>=0} 2^(-n*(n+1)/2!) * Product_{k=0..n} tan(2^k*x).
2
1, 2, 8, 64, 976, 23072, 808688, 48448384, 5085859456, 787587828992, 172251228685568, 61567677411810304, 37205957567375604736, 32218626571889542694912, 38411427146174647342235648, 73187646662485142233440845824, 231273043503438376340776532770816
OFFSET
1,2
COMMENTS
Limit a(n)*a(n+2)/a(n+1)^2 appears to have 4 attractors near [1.33088873225, 1.28507876546, 1.49830439017, 1.56094802901]. [Extended by Vaclav Kotesovec, Oct 03 2020]
Limit ( a(n)*a(n+5)/(a(n+1)*a(n+4)) )^(1/4) appears to converge (1.41...?).
LINKS
FORMULA
E.g.f.: Sum_{n>=0} sin(x)^(n+1) * Product_{k=0..n} cos(2^k*x)^(n-1-k).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 8*x^3/3! + 64*x^4/4! + 976*x^5/5! +...
where
A(x) = tan(x) + tan(x)*tan(2*x)/2 + tan(x)*tan(2*x)*tan(4*x)/2^3 + tan(x)*tan(2*x)*tan(4*x)*tan(8*x)/2^6 +...
A(x) = sin(x)/cos(x) + sin(x)^2/cos(2*x) + sin(x)^3*cos(x)/cos(4*x) + sin(x)^4*cos(x)^2*cos(2*x)/cos(8*x) + sin(x)^5*cos(x)^3*cos(2*x)^2*cos(4*x)/cos(16*x) + sin(x)^6*cos(x)^4*cos(2*x)^3*cos(4*x)^2*cos(8*x)/cos(32*x) +...
PROG
(PARI) {a(n)=local(A=sum(m=0, n, 2^(-m*(m+1)/2!)*prod(k=0, m, tan(2^k*x+x*O(x^n))))); n!*polcoeff(A, n)}
(PARI) {a(n)=local(X=x+x*O(x^n), A=sum(m=0, n, sin(X)^(m+1)*prod(k=0, m, cos(2^k*X)^(m-1-k)))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2011
STATUS
approved