login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194027
E.g.f.: Sum_{n>=0} sin(2^n*x)^n / 2^(n^2).
3
1, 1, 2, 2, -104, -3704, -113968, -2059408, 362847616, 113325214336, 25903723142912, 3643199606296832, -2713129993221899264, -5529958919819578778624, -7506437411940645017540608, -6418592915828033819245078528, 20775854326350479088039843168256
OFFSET
0,3
COMMENTS
Signs of terms are of period 8: [+,+,+,+,-,-,-,-].
FORMULA
E.g.f.: Sum_{n>=0} sin(x)^n * Product_{k=0..n-1} cos(2^k*x)^n.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 2*x^3/3! - 104*x^4/4! - 3704*x^5/5! +...
where
A(x) = 1 + sin(2*x)/2 + sin(2^2*x)^2/2^4 + sin(2^3*x)^3/2^9 + sin(2^4*x)^4/2^16 +...
Also,
A(x) = 1 + sin(x)*cos(x) + sin(x)^2*cos(x)^2*cos(2*x)^2 + sin(x)^3*cos(x)^3*cos(2*x)^3*cos(4*x)^3 + sin(x)^4*cos(x)^4*cos(2*x)^4*cos(4*x)^4*cos(8*x)^4 +...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), A=sum(m=0, n, sin(2^m*X)^m/2^(m^2))); n!*polcoeff(A, n)}
(PARI) {a(n)=local(X=x+x*O(x^n), A=sum(m=0, n, sin(X)^m*prod(k=0, m-1, cos(2^k*X)^m))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A194026.
Sequence in context: A270591 A210467 A156524 * A376440 A003110 A100956
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 12 2011
STATUS
approved