login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270591 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3)), where r(k) = 1/(k+1). 2
1, 2, 2, 99, 12204, 249462465, 93524017020207705, 8528549813750403709101762452858246, 70071914165301390868341700110703069865385640933927590404095892463912 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.

See A269993 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..12

Eric Weisstein's World of Mathematics, Egyptian Fraction

Index entries for sequences related to Egyptian fractions

EXAMPLE

(1/2)^(1/3)) = 1/(2*1) + 1/(3*2) + 1/(4*2) + 1/(5*99) + ...

MATHEMATICA

r[k_] := 1/(k+1); f[x_, 0] = x; z = 10;

n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]

CROSSREFS

Cf. A269993.

Sequence in context: A166996 A133295 A055470 * A210467 A156524 A194027

Adjacent sequences:  A270588 A270589 A270590 * A270592 A270593 A270594

KEYWORD

nonn,frac,easy

AUTHOR

Clark Kimberling, Apr 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 06:37 EST 2020. Contains 331033 sequences. (Running on oeis4.)