The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270593 Total number of subtrees of the complete simple undirected graph K_n on n vertices. 1
0, 1, 3, 9, 38, 250, 2367, 29197, 441212, 7874244, 161950445, 3770473399, 98009367282, 2813394489022, 88387455559067, 3016497635377545, 111127442649962168, 4395316276005329608, 185766120783135345177, 8355290720655784462507, 398470047793625748742670, 20084626943220497590901346 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A complete graph on n vertices can have subgraphs, having from 1 to n vertices inclusively. To choose k vertices from n vertices, there are binomial(n, k) combinations. Having chosen the k vertices, the complete subgraph on these k vertices, according to A000272, has k^(k-2) spanning trees. To calculate the total number of spanning trees for all subgraphs with k-vertices, the number of combinations must be multiplied by the number of spanning trees: binomial(n, k) * (k^(k-2)). To get the total number of all subtrees, all possible graph sizes, that is k=[1..n], must be accounted for.
LINKS
Mathematics Stack Exchange, Graph Theory - Trees, answer by user Thomas Lesgourgues, Jan 22 2019.
FORMULA
a(n) = Sum_{k=1..n} binomial(n,k)*(k^(k-2)).
a(n) ~ exp(exp(-1)) * n^(n-2). - Vaclav Kotesovec, Apr 02 2016
EXAMPLE
For an empty graph, having no vertices, a(0)=0.
a(1)=1 as there is a trivial tree consisting of a single vertex.
When number of vertices n=2, a(n)=2+1=3: 2 singles A, B; 1 pair: A-B.
For n=3, a(n)=3+3+3=9: 3 singles A, B, C; 3 pairs: A-B, A-C, B-C; 3 triples: A-B|B-C, B-C|C-A, C-A|A-B.
For n=4, a(n)=4+6+12+16=38: 4 singles A, B, C, D; 6 pairs: A-B, A-C, A-D, B-C, B-D, C-D; 12 triples: A-B|A-C, A-B|A-D, A-B|B-C, A-B|B-D, A-C|A-D, A-C|B-C, A-C|C-D, A-D|B-D, A-D|C-D, B-C|C-D, B-D|B-C, B-D|C-D; 16 4-tuples: A-B|A-C|A-D, A-B|A-C|B-D, A-B|A-C|C-D, A-B|A-D|B-C, A-B|A-D|C-D, A-B|B-C|B-D, A-B|B-C|C-D, A-B|B-D|C-D, A-C|A-D|B-C, A-C|A-D|B-D, A-C|B-C|B-D, A-C|B-C|C-D, A-C|B-D|C-D, A-D|B-C|B-D, A-D|B-C|C-D, A-D|B-D|C-D. It is worth noting that A-B|C-D is not a tree, because there is no path from A to C. Also, A-B|A-C|B-C is a cycle, not a tree.
a(8)=8+28+168+1120+7000+36288+134456+262144=441212.
PROG
(PARI) a(n) = sum(k=1, n, binomial(n, k)*(k^(k-2))); \\ Michel Marcus, Mar 20 2016
CROSSREFS
Cf. A000272 (number of trees on n labeled nodes).
Sequence in context: A030818 A225960 A020121 * A059804 A065657 A296102
KEYWORD
nonn
AUTHOR
Viktar Karatchenia, Mar 19 2016
EXTENSIONS
More terms from Michel Marcus, Mar 20 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)