The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059804 Consider the line segment in R^n from the origin to the point v=(2,3,5,7,11,...) with prime coordinates; let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v. 4
 1, 3, 9, 39, 87, 215, 391, 711, 1326, 1975, 2925, 4256, 5696, 7537, 9774, 12488, 16322, 20477, 24966, 30007, 35336, 41577, 48466, 56387, 65796, 75997, 86606, 98055, 109936, 122705, 138834, 155995, 174764, 194085, 216286, 239087, 263736, 290305 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS v.v is given by A024450(n). For n >= 19, a(n) = A024450(n-1). Officially these are just conjectures so far. LINKS N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy] N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478. N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy] CROSSREFS Cf. A059774, A024450, A047896, A060453. Cf. A137609 (where the minimum distance occurs along the line segment). Sequence in context: A225960 A020121 A270593 * A065657 A296102 A149026 Adjacent sequences:  A059801 A059802 A059803 * A059805 A059806 A059807 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane and Vinay Vaishampayan, Feb 21, 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)