%I #10 Mar 25 2015 16:28:34
%S 1,3,9,39,87,215,391,711,1326,1975,2925,4256,5696,7537,9774,12488,
%T 16322,20477,24966,30007,35336,41577,48466,56387,65796,75997,86606,
%U 98055,109936,122705,138834,155995,174764,194085,216286,239087,263736,290305
%N Consider the line segment in R^n from the origin to the point v=(2,3,5,7,11,...) with prime coordinates; let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.
%C v.v is given by A024450(n). For n >= 19, a(n) = A024450(n-1).
%C Officially these are just conjectures so far.
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/Exists.pdf">Fat Struts: Constructions and a Bound</a>, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [<a href="/A047896/a047896.pdf">Cached copy</a>]
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/FATS.pdf">A Note on Projecting the Cubic Lattice</a>, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/main_fat_strut.pdf">The Lifting Construction: A General Solution to the Fat Strut Problem</a>, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [<a href="/A047896/a047896_1.pdf">Cached copy</a>]
%Y Cf. A059774, A024450, A047896, A060453.
%Y Cf. A137609 (where the minimum distance occurs along the line segment).
%K nonn,easy,nice
%O 2,2
%A _N. J. A. Sloane_ and _Vinay Vaishampayan_, Feb 21, 2001