login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296102
Number of total dominating sets in the n-prism graph.
4
3, 9, 39, 121, 443, 1521, 5071, 17161, 58035, 196249, 664183, 2247001, 7601259, 25715041, 86992799, 294294025, 995591267, 3368061225, 11394069191, 38545861561, 130399710235, 441139057489, 1492362749807, 5048627017225, 17079382868243, 57779138385081, 195465425009943
OFFSET
1,1
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 16 2018
LINKS
Eric Weisstein's World of Mathematics, Prism Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (3, 0, 4, -2, 10, 4, 0, -1, -1).
FORMULA
From Andrew Howroyd, Apr 16 2018: (Start)
G.f.: x*(3 + 12*x^2 - 8*x^3 + 50*x^4 + 24*x^5 - 8*x^7 - 9*x^8)/((1 - x + x^2 + x^3)*(1 + x + x^2 - x^3)*(1 - 3*x - x^2 - x^3)).
a(n) = 3*a(n-1) + 4*a(n-3) - 2*a(n-4) + 10*a(n-5) + 4*a(n-6) - a(n-8) - a(n-9) for n > 9. (End)
MATHEMATICA
Table[RootSum[-1 - # - 3 #^2 + #^3 &, #^n &] + RootSum[1 + # - #^2 + #^3 &, #^n &] + RootSum[-1 + # + #^2 + #^3 &, #^n &], {n, 20}]
LinearRecurrence[{3, 0, 4, -2, 10, 4, 0, -1, -1}, {3, 9, 39, 121, 443,
1521, 5071, 17161, 58035}, 20]
CoefficientList[Series[(3 + 12 x^2 - 8 x^3 + 50 x^4 + 24 x^5 - 8 x^7 - 9 x^8)/(1 - 3 x - 4 x^3 + 2 x^4 - 10 x^5 - 4 x^6 + x^8 + x^9), {x, 0, 20}], x]
PROG
(PARI) Vec((3 + 12*x^2 - 8*x^3 + 50*x^4 + 24*x^5 - 8*x^7 - 9*x^8)/((1 - x + x^2 + x^3)*(1 + x + x^2 - x^3)*(1 - 3*x - x^2 - x^3)) + O(x^30)) \\ Andrew Howroyd, Apr 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 16 2018
EXTENSIONS
a(1)-a(2) and terms a(10) and beyond from Andrew Howroyd, Apr 16 2018
STATUS
approved