

A137609


Consider a line in nspace given parametrically by y(t)=v*t, where v is the vector (2,3,5,..prime(n)). Let t0>0 be the least value of t such that y(t0) is closest to an integer point not on the line y(t). a(n) is t0 times v.v.


1



5, 15, 36, 91, 145, 305, 476, 729, 408, 1295, 1796, 1072, 1370, 1749, 2226, 2816, 3426, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

See A059804 for the distance from y(t0) to the integer point. Observe that for n >= 19, a(n) = prime(n). For n >= 19, the closest integer point is (0,0,0,..,0,1).


LINKS

Table of n, a(n) for n=2..50.


CROSSREFS

Sequence in context: A163250 A053808 A111926 * A109818 A146797 A213487
Adjacent sequences: A137606 A137607 A137608 * A137610 A137611 A137612


KEYWORD

nonn


AUTHOR

T. D. Noe, Jan 29 2008


STATUS

approved



