The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166996 G.f.: S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)!, a power series in x with integer coefficients. 4
 2, 2, 88, 1028, 289184, 22451552, 112890141568, 50093449805856, 6676830881369059840, 15354513520142235310592, 66620888067382334066280699904, 750203718611121304644623635491840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..50 FORMULA a(n) = (binomial(2^n + n-1, n) - (-1)^n*binomial(2^n, n) )/2. [Paul D. Hanna, Nov 24 2009] EXAMPLE G.f.: S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 + ... The g.f. of A166995 is C(x): C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)!. C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 + ... where C(x) + S(x) = Sum_{n>=0} C(2^n + n - 1, n)*x^n ... (cf. A060690) and C(x) - S(x) = Sum_{n>=0} C(2^n, n)*(-x)^n ... (cf. A014070). Related expansions: C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 + ... C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 + ... MATHEMATICA Table[(1/2)*(Binomial[2^n + n - 1, n ] - (-1)^n *Binomial[2^n, n]), {n, 50}] (* G. C. Greubel, May 30 2016 *) PROG (PARI) {a(n)=polcoeff(-sum(k=0, n, log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!), n)} (PARI) {a(n)=(binomial(2^n + n-1, n) - (-1)^n*binomial(2^n, n))/2} \\ Paul D. Hanna, Nov 24 2009 CROSSREFS Cf. A166995, A166997, A166998, A060690, A014070. Sequence in context: A156523 A191779 A156511 * A133295 A055470 A270591 Adjacent sequences: A166993 A166994 A166995 * A166997 A166998 A166999 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)