login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of entries in the n-th row of Pascal's triangle not divisible by 5.
5

%I #47 Jan 01 2023 04:09:17

%S 1,2,3,4,5,2,4,6,8,10,3,6,9,12,15,4,8,12,16,20,5,10,15,20,25,2,4,6,8,

%T 10,4,8,12,16,20,6,12,18,24,30,8,16,24,32,40,10,20,30,40,50,3,6,9,12,

%U 15,6,12,18,24,30,9,18,27,36,45,12,24,36,48,60,15,30

%N Number of entries in the n-th row of Pascal's triangle not divisible by 5.

%C Pascal triangles modulo p with p prime have the dimension D = log(p*(p+1)/2)/log(p). [Corrected by _Connor Lane_, Nov 28 2022]

%C Also number of ones in row n of triangle A254609. - _Reinhard Zumkeller_, Feb 04 2015

%H Alois P. Heinz, <a href="/A194459/b194459.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = Product_{d=1..4} (d+1)^b(n,d) with b(n,d) = number of digits d in base 5 expansion of n. The formula generalizes to other prime bases p.

%F a(n) = A194458(n) - A194458(n-1).

%e n = 32 = 112|_5: b(32,1) = 2, b(32,2) = 1, thus a(32) = 2^2 * 3^1 = 12.

%p a:= proc(n) local l, m, t;

%p m:= n;

%p l:= [0$5];

%p while m>0 do t:= irem(m, 5, 'm')+1; l[t]:=l[t]+1 od;

%p mul(r^l[r], r=2..5)

%p end:

%p seq(a(n), n=0..100);

%t Nest[Join[#, 2#, 3#, 4#, 5#]&, {1}, 4] (* _Jean-François Alcover_, Apr 12 2017, after code by _Robert G. Wilson v_ in A006047 *)

%o (Haskell)

%o a194459 = sum . map (signum . flip mod 5) . a007318_row

%o -- _Reinhard Zumkeller_, Feb 04 2015

%Y Cf. A006046, A001316 (for p=2).

%Y Cf. A006048, A006047 (for p=3).

%Y Cf. A194458 (for p=5).

%Y Cf. A007318, A254609.

%K nonn,look

%O 0,2

%A _Paul Weisenhorn_, Aug 24 2011

%E Edited by _Alois P. Heinz_, Sep 06 2011