The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082907 A modified Pascal's triangle, read by rows, and modified as follows: binomial(n,j) is replaced by gcd(2^n, binomial(n,j)), i.e., the largest power of 2 dividing binomial(n,j). 10
 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 8, 2, 8, 4, 8, 1, 1, 1, 4, 4, 2, 2, 4, 4, 1, 1, 1, 2, 1, 8, 2, 4, 2, 8, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 4, 1, 8, 4, 8, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS If N is a power of 2, then the first N rows are invariant under all 6 symmetries of an equilateral triangle. - Paul Boddington, Dec 17 2003 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143. E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 5. Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. FORMULA From Paul Boddington, Dec 17 2003: (Start) T(n, j) = c(n)/(c(j)*c(n-j)) where c(n)=A060818(n). T(n, j) = (b(j)*b(n-j))/b(n) where b(n)=A001316(n) (Gould's sequence). (End) EXAMPLE Triangle read by rows:             1,            1,1,           1,2,1,          1,1,1,1,         1,4,2,4,1,        1,1,2,2,1,1,       1,2,1,4,1,2,1,      1,1,1,1,1,1,1,1,     1,8,4,8,2,8,4,8,1,    1,1,4,4,2,2,4,4,1,1,   ... For n = -1 + 2^k, such rows consist of all 1's since all binomial coefficients C(n,j) are odd. MATHEMATICA Flatten[Table[Table[GCD[2^n, Binomial[n, j]], {j, 0, n}], {n, 0, 25}], 1] f[n_] := Denominator[CatalanNumber[n - 1]/2^(n - 1)]; T[n_, k_] := f[n]/(f[k]*f[n - k]); Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 24 2016 *) CROSSREFS Cf. A000005, A000079, A001316, A007318, A060818. Sequence in context: A205399 A135303 A036065 * A146532 A305720 A225372 Adjacent sequences:  A082904 A082905 A082906 * A082908 A082909 A082910 KEYWORD nonn,tabl AUTHOR Labos Elemer, Apr 23 2003 EXTENSIONS Edited by Jon E. Schoenfield, Dec 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 06:42 EST 2021. Contains 349401 sequences. (Running on oeis4.)