login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082905
Modified Pascal-triangle, read by rows. All C(n,j) binomial coefficients are replaced by C(n/g, j/g), where g = gcd(n,j).
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 2, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 2, 3, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 4, 56, 2, 56, 4, 8, 1, 1, 9, 36, 3, 126, 126, 3, 36, 9, 1, 1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 12, 6, 4, 3, 792, 2, 792, 3, 4, 6, 12, 1
OFFSET
0,5
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 2, 4, 1;
1, 5, 10, 10, 5, 1;
1, 6, 3, 2, 3, 6, 1;
1, 7, 21, 35, 35, 21, 7, 1;
1, 8, 4, 56, 2, 56, 4, 8, 1;
1, 9, 36, 3, 126, 126, 3, 36, 9, 1;
1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1;
MATHEMATICA
Flatten[Table[Table[Binomial[n/GCD[n, j], j/GCD[n, j]], {j, 0, n}], {n, 1, 32}], 1]
PROG
(PARI) T(n, k) = my(g=gcd(n, k)); if (!g, g=1); binomial(n/g, k/g);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Aug 30 2019
(Sage)
def T(n, k):
if k==0 or k==n: return 1
else: return binomial(n/gcd(n, k), k/gcd(n, k))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 30 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
else return Binomial(n/Gcd(n, k), k/Gcd(n, k));
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Aug 30 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Labos Elemer, Apr 23 2003
EXTENSIONS
More terms from Michel Marcus, Aug 30 2019
STATUS
approved