Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 30 2019 22:05:35
%S 1,1,1,1,2,1,1,3,3,1,1,4,2,4,1,1,5,10,10,5,1,1,6,3,2,3,6,1,1,7,21,35,
%T 35,21,7,1,1,8,4,56,2,56,4,8,1,1,9,36,3,126,126,3,36,9,1,1,10,5,120,
%U 10,2,10,120,5,10,1,1,11,55,165,330,462,462,330,165,55,11,1,1,12,6,4,3,792,2,792,3,4,6,12,1
%N Modified Pascal-triangle, read by rows. All C(n,j) binomial coefficients are replaced by C(n/g, j/g), where g = gcd(n,j).
%H G. C. Greubel, <a href="/A082905/b082905.txt">Rows n = 0..100 of triangle, flattened</a>
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 3, 3, 1;
%e 1, 4, 2, 4, 1;
%e 1, 5, 10, 10, 5, 1;
%e 1, 6, 3, 2, 3, 6, 1;
%e 1, 7, 21, 35, 35, 21, 7, 1;
%e 1, 8, 4, 56, 2, 56, 4, 8, 1;
%e 1, 9, 36, 3, 126, 126, 3, 36, 9, 1;
%e 1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1;
%t Flatten[Table[Table[Binomial[n/GCD[n, j], j/GCD[n, j]], {j, 0, n}], {n, 1, 32}], 1]
%o (PARI) T(n,k) = my(g=gcd(n,k)); if (!g, g=1); binomial(n/g, k/g);
%o tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", "))); \\ _Michel Marcus_, Aug 30 2019
%o (Sage)
%o def T(n,k):
%o if k==0 or k==n: return 1
%o else: return binomial(n/gcd(n,k), k/gcd(n,k))
%o [[T(n,k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Aug 30 2019
%o (GAP)
%o T:= function(n,k)
%o if k=0 or k=n then return 1;
%o else return Binomial(n/Gcd(n,k), k/Gcd(n,k));
%o fi;
%o end;
%o Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Aug 30 2019
%Y Cf. A000005, A007318, A056045.
%K nonn,tabl
%O 0,5
%A _Labos Elemer_, Apr 23 2003
%E More terms from _Michel Marcus_, Aug 30 2019