The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254606 The minimum absolute difference between k*p1 and p2 (p1
 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 3, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 3, 5, 4, 0, 1, 1, 1, 2, 3, 6, 2, 0, 1, 1, 2, 2, 1, 3, 6, 4, 0, 1, 1, 1, 1, 4, 3, 5, 9, 6, 0, 1, 1, 1, 3, 2, 5, 3, 7, 8, 2, 0, 1, 1, 2, 2, 4, 2, 3, 1, 9, 8, 6, 0, 1, 1, 1, 1, 3, 2, 7, 3, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS k is an integer that minimizes |k*p1-p2|. It is trivial that if j is the integer part of p2/p1, k is either j or j+1. LINKS Lei Zhou, Table of n, a(n) for n = 1..10000 EXAMPLE A087112(1)=4=2*2, 2-2=0, so a(1)=0; A087112(2)=6=2*3, 3-2=2*2-3=1, so a(2)=1; ... A087112(9)=35=5*7, 7-5=2, and 2*5-7=3, the smaller is 2. So a(9)=2. MATHEMATICA NumDiff[n1_, n2_] := Module[{c1 = n1, c2 = n2}, If[c1 < c2, c1 = c1 + c2; c2 = c1 - c2; c1 = c1 - c2]; k = Floor[c1/c2]; a1 = c1 - k*c2; If[a1 == 0, a2 = 0, a2 = (k + 1) c2 - c1]; Return[Min[a1, a2]]]; p1 = 2; p2 = 1; Table[p2 = NextPrime[p2]; If[p2 > p1, p1 = p2; p2 = 2]; NumDiff[p1, p2], {n, 1, 100}] CROSSREFS Cf. A087112, A254605. Sequence in context: A333467 A120648 A215401 * A175358 A235330 A029394 Adjacent sequences: A254603 A254604 A254605 * A254607 A254608 A254609 KEYWORD nonn,easy AUTHOR Lei Zhou, Feb 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2024. Contains 372882 sequences. (Running on oeis4.)