login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333467
Array read by antidiagonals: T(n,k) is the number of k-regular multigraphs on n labeled nodes, loops allowed, n >= 0, k >= 0.
6
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 5, 3, 1, 1, 0, 3, 0, 17, 0, 1, 1, 1, 3, 15, 47, 73, 15, 1, 1, 0, 4, 0, 138, 0, 388, 0, 1, 1, 1, 4, 34, 306, 2021, 4720, 2461, 105, 1, 1, 0, 5, 0, 670, 0, 43581, 0, 18155, 0, 1, 1, 1, 5, 65, 1270, 25050, 291001, 1295493, 1256395, 152531, 945, 1
OFFSET
0,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..405 (diagonals 0..27)
EXAMPLE
Array begins:
=============================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 0 1 0 1 0 1 ...
2 | 1 1 2 2 3 3 4 ...
3 | 1 0 5 0 15 0 34 ...
4 | 1 3 17 47 138 306 670 ...
5 | 1 0 73 0 2021 0 25050 ...
6 | 1 15 388 4720 43581 291001 1594340 ...
7 | 1 0 2461 0 1295493 0 159207201 ...
8 | 1 105 18155 1256395 50752145 1296334697 23544232991 ...
...
MAPLE
b:= proc(l, i) option remember; (n-> `if`(n=0, 1,
`if`(l[n]=0, b(sort(subsop(n=[][], l)), n-1),
`if`(i<1, 0, b(l, i-1)+`if`(i=n, `if`(l[n]>1,
b(subsop(n=l[n]-2, l), i), 0), `if`(l[i]>0,
b(subsop(i=l[i]-1, n=l[n]-1, l), i), 0))))))(nops(l))
end:
A:= (n, k)-> b([k$n], n):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 23 2020
MATHEMATICA
b[l_, i_] := b[l, i] = Function[n, If[n == 0, 1, If[l[[n]] == 0, b[Sort[ ReplacePart[l, n -> Nothing]], n-1], If[i < 1, 0, b[l, i-1] + If[i == n, If[l[[n]] > 1, b[ReplacePart[l, n -> l[[n]]-2], i], 0], If[l[[i]] > 0, b[ReplacePart[l, {i -> l[[i]]-1, n -> l[[n]]-1}], i], 0]]]]]][Length[l]];
A[n_, k_] := b[Table[k, {n}], n];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 07 2020, after Alois P. Heinz *)
PROG
(PARI)
MultigraphsWLByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], forstep(e=0, limit, 2, recurse(n-r, limit, src[i, 1], 0, src[i, 2], e)))); Mat(M);
}
T(n, k)={if(n%2&&k%2, 0, vecsum(MultigraphsWLByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
{ for(n=0, 8, for(k=0, 6, print1(T(n, k), ", ")); print) }
CROSSREFS
Rows n=0..3 are A000012, A059841, A008619, A006003.
Columns k=0..4 are A000012, A123023, A002135, A005814, A005816.
Cf. A059441 (graphs), A167625 (unlabeled nodes), A333351 (without loops).
Sequence in context: A166396 A152221 A144092 * A120648 A215401 A254606
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 23 2020
STATUS
approved