login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333469
Number of integers in base n having exactly four distinct digits such that the number formed by the consecutive subsequence of the initial j digits is divisible by j for all j in {1,2,3,4}.
2
0, 0, 0, 0, 2, 1, 8, 34, 58, 98, 168, 275, 428, 586, 849, 1193, 1647, 2017, 2679, 3454, 4410, 5283, 6676, 7900, 9838, 11396, 13758, 15994, 19216, 21493, 25450, 29026, 33854, 37636, 43724, 48369, 55884, 61374, 69831, 76803, 87269, 94285, 106337, 116062, 129862
OFFSET
0,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,0,0,0,0,0,0,3,-3,-3,3,0,0,0,0,0,0,0,0,-3,3,3,-3,0,0,0,0,0,0,0,0,1,-1,-1,1).
FORMULA
G.f.: -(6*x^35 -4*x^33 +41*x^32 +11*x^31 +87*x^30 -46*x^29 +40*x^28 +165*x^27 +126*x^26 -40*x^25 +293*x^24 +120*x^23 +94*x^22 +181*x^21 +296*x^20 +150*x^19 +299*x^18 +56*x^17 +243*x^16 +324*x^15 +193*x^14 +29*x^13 +185*x^12 +186*x^11 +110*x^10 +51*x^9 +83*x^8 +67*x^7 +46*x^6 +14*x^5 +17*x^4 +27*x^3 +5*x^2 -x +2)*x^4 / ((x^2+1)^3 *(x^2+x+1)^3 *(x^2-x+1)^3 *(x^4-x^2+1)^3 *(x+1)^4 *(x-1)^5).
EXAMPLE
a(4) = 2: 1230, 3210 (written in base 4).
a(5) = 1: 3140 (written in base 5).
a(6) = 6: 1032, 1204, 1432, 3204, 4032, 5032, 5204, 5432 (written in base 6).
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 2, 1, 8, 34, 58, 98, 168, 275, 428, 586, 849, 1193, 1647, 2017, 2679, 3454, 4410, 5283, 6676, 7900, 9838, 11396, 13758, 15994, 19216, 21493, 25450, 29026, 33854, 37636, 43724, 48369, 55884, 61374, 69831, 76803}, 110] (* Harvey P. Dale, Oct 06 2023 *)
CROSSREFS
Column k=4 of A334318.
Sequence in context: A012962 A214731 A079899 * A239444 A224090 A013327
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, May 04 2020
STATUS
approved