|
|
A079899
|
|
a(1) = 1; a(n) = Fibonacci(n) - Fibonacci(n-1)* a(n-1) if n > 1.
|
|
0
|
|
|
1, 0, 2, -1, 8, -32, 269, -3476, 73030, -2482965, 136563164, -12154121452, 1750193489321, -407795083011416, 153738746295304442, -93780635240135708633, 92561486982013944422368, -147820694710276269242519112, 381968675131353879722669389589
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
1. Let s(n) be a sequence such that lim s(n)/s(n+1) = K different from -1. The "oscillator sequence" (or simply "oscillator") of s(n) is the sequence s'(n) defined by the rules: s'(1) = 1; s'(n) = 1 - (s(n-1)/s(n)) s'(n-1). 2. It is an open problem whether the oscillator (prime)' converges to 1/2 or diverges. 3. s'(n) = 1 - (s(n-1)/s(n)) s'(n-1) = [s(n) - s(n-1) s'(n-1)]/s(n). The numerator is the expression s(n) - s(n-1) s'(n-1), which motivates the definition of the above sequence a(n). a(n) is called the "integral oscillator" of Fibonacci(n). In general the integral oscillator of s(n) can be defined similarly.
|
|
LINKS
|
|
|
MATHEMATICA
|
t = {1}; gt = 1; For[i = 2, i <= 20, i++, gt = Fibonacci[i] - Fibonacci[i - 1] gt; t = Append[t, gt]]; t
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|