login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193885
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4), n>=4; a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 3.
2
1, 1, 2, 3, 3, 1, -5, -18, -41, -75, -115, -143, -118, 35, 431, 1213, 2499, 4254, 6047, 6665, 3609, -7375, -32334, -77933, -147781, -234503, -305765, -283634, -20329, 718653, 2239077, 4824577, 8495482, 12533139, 14698471, 10166901, -9557053, -57006530
OFFSET
0,3
COMMENTS
The Ze1 sums, see A180662, of triangle A108299 equal the terms of this sequence.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4), n>=4; a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 3.
G.f.: (1-x)*(1-x+x^2)/(1-3*x+3*x^2-x^3+x^4).
a(n) = (-1)^(n+1)*(A099531(n+4) + 2*A099531(n+3) + 2*A099531(n+2) + A099531(n+1)).
MAPLE
A193885 := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 2 elif n=3 then 3 elif n>=4 then 3*procname(n-1)-3*procname(n-2)+procname(n-3)-procname(n-4) fi: end: seq(A193885(n), n=0..37);
MATHEMATICA
CoefficientList[Series[(1-x)*(1-x+x^2)/(1-3*x+3*x^2-x^3+x^4), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 10 2012 *)
PROG
(Magma)I:=[1, 1, 2, 3 ]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 10 2012
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Johannes W. Meijer, Aug 11 2011
STATUS
approved